BOUNDARY LAYER OF NON-NEWTONIAN FLUIDS OBEYING
A RHEOLOGICAL POWER LAW FOR ARBITRARY
PRESSURE GRADIENTS

A. Sh., Dorfman and V., K, Vishnevskii UDC 532.517.2

The equations of the boundary layer associated with non-Newtonian fluids obeying a rheologi-
cal power law are integrated by a semiintegral method based on the simultaneous solution of
the linearized equation of motion and the integral relationship.

A method of calculating the properties of a boundary layer based on the simultaneous solution of the
equations of motion (linearized by means of a suitable set of profiles) and the integral relationship was de-
veloped in [1-3]. This method may be called the semiintegral or parametric-linearization method; it gives
a highly accurate solution at all points except in the region close to the break-off point, as may be con-
firmed by a calculation of the second approximation [2] and comparison with numerical solutions, If it is
necessary to increase the accuracy, the second and subsequent approximations may be calculated. In ad-
dition to this, the semiintegral method provides simple relationships between the fundamental characteris-
tics of the boundary layer and the velocity distribution outside the layer as well as the longitudinal deriva-
tives of this.

In this paper the semiintegral method is employed to integrate the equations of the boundary layer of
non-Newtonian fluids obeying a rheological power law [4]
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Formulas will be obtained for the velocity distribution in the boundary layer and the frictional forces at the
wall for an arbitrary velocity distribution outside the layer. Tables of coefficients will be given for cal-
culating the friction associated with different values of the index n. By way of example we shall consider
flow around a circular cylinder, We shall derive the frictional stress distribution on the surface of the
cylinder for various values of n, and shall calculate the second approximation for this case. We shall es-
tablish the relationship between the position of the break-off point on the cylinder and the index n of the
non-Newtonian behavior of the fluid.

The problem of the flow of non-Newtonian fluids obeying a power law for arbitrary pressure gradients
has been solved by a number of authors using integration and other approximate methods [4]. However, the
accuracy of these methods falls sharply for values of n appreciably deviating from unity [4, §]. The prob-
lem was solved in [5] in the form of Blasius series, However, the slow convergence of the series meant
that these could only be used at short distances from the critical point of the cylinder.

The equations of the boundary layer in fluids obeying a law of type (1) take the following form [4] (in
future we shall use dimensionless variables)
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Treating n as arbitrary, let us introduce variables analogous to the variables of Hertler [6] in the
case of a Newtonian fluid

® - 5’ UrY(dy, = ——— 4
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In order to obtain an equation of the Prandtl- Mises type instead of (2), we take (4) as independent variables.

Since the countinuity equation is satisfied on introducing the current function, after certain transformations
we may replace the system (2) by the following equation

(n_l_l)(p_aéHqJ 0Z ulu 0 (uNTLOFL (5)
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In order to linearize this equation we use automodel solutions obtained for a power-type velocity dis-
tribution U = cx™ in the external flow, as in the case of the Newtonian fluid [1, 3]. Denoting the automodel
velocity distribution by o (¢, m, n) and using it to calculate the coefficient attached to the second derivative
in Eq. (5), we obtain the following linear equation
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For boundary conditions (8) the solution of this equation may be expressed by the series
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where
Sp=U2 S, =0UY) ... S, =0UHH. ..
are functions of the longitudinal coordinate x calculated from the known U(x) (' signifies differentiation with

respect to ). The coefficients A (p, m, n) are determined by the ordinary differential equations obtained
on substituting the series (8) into (7) (. signifies differentiation with respect to ¢):

aloal A, + 9h, — (n+ kA, = (n+ 1) Ay,
4,000 =1, A4, (0) = 4, () = 0.

Using the series (8) we find the frictional stress at the wall, Referring this to the quantity p[Ui?K
JoLM/0+1) e obtain

9
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The coefficients a = —~2 1[n(n + 1)]—[1/(n+1)]Ak(0’ m, n) are determined by integrating Eq. (9) in the same
way as in the case of a Newtonian fluid [3]. The values of the first five coefficients gy are given in Table 1.

For a given n the coefficients of series (8) and (10) depend on the parameter m determining the auto-
model profile chosen for linearizing the initial equation (5). The value of this parameter may be determined
from the integral relationship or some other integration condition. The choice of integration condition has
little effect on the results of the calculation. It is most convenient [3] to use a condition based on equating
the energy-loss thicknesses 6*** corresponding to the profile found from Eq. (8) and the automodel profile
respectively. This condition leads to the following relation [3]:
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If, as in (3], we approximate the D = Dy (D) relationships by linear equations and solve the equation thus
obtained from (11), we may deduce a formula giving the relation between D, and the specified functions Sk (x):
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TABLE 1. Values of the Coefficients aj

0.8 1 } 1,2 1,4 1,6 1,8 2

Dn’o‘o‘o|o‘o|o o|o|o

@ ]0,349] 0,325 |0,324]0,332(0,345] 0,360 | 0,374 | 0,380 | 0,403
e, 10,937] 0,813 |0,771{0,757|0,754| 0,760 | 0,769 | 0,779 | 0.793
—a, |0,135] 0,113 |0,103/0,099|0,096| 0,095 | 0,094 | 0.093 | 0,093
10a, (0,283 0,231 [0,208|0,194|0,185] 0,178 | 0,175 | 0,172 | 0,170

»

—10a, 0,054 0,043 {0,039]0,035}0,032| 0,03! 0,030 0,029 0,028

D, |1,710] 0,675 ;0,341|o,187|o,122§ 0,088 l 0,066 ] 0,054 ’ 0,044

@ |0,280] 0,276 |0,293]0,313]0,33¢| 0,355 | 0,374 | 0,300 | 0,406

@ |0,96]| 0,770 |0,669|0,616]0,587| 0,570 | 0,558 | 0,553 | 0548
—a, 0,138 0,109 {0,091]0,081|0,074| 0,070 | 0,067 | 0,065 | 0.063
10a, [0,293] 0,222 {0,184]0,157|0,140| 0,130 | 0,120 | 0,115 | 0.110
—10a, |0,056| 0,042 |0,032|0,0280,025| 0,022 | 0,020 | 0,018 | 0,017

D, 14,11‘ 1,440 0,58010,296!0,180 0,124 l 0,091 | 0,070 | 0,058

a |0,182] 0,232 [0,274[0,305/0,330| 0,352 | 0,374 | 0,391 | 0,408

a 1,013] 0,748 [0.628|0.564|0.513| 0,514 | 0)505 | 0,500 | 0,493
—a, |0.144] 0,107 |0,086|0,074|0,067| 0,063 | 0,050 | 0,057 | 0,056
10a, 10.306] 0,217 [0,174(0,144[0,195| 0,117 | 0)106 | 0,100 | 0,094
—10a, {0,058| 0,040 |0,031{0,026(0,022| 0,020 | 0,018 | 0,017 | 0,015

TABLE 2. Values of the Coefficients by and dj

n 0.4 0,6 0,8 l 1 1,2 ' 1,4 } 1,6 I 1,8

—b 1,165 0,643 | 0,424/ 0,3101 0,239 | 0,195 | 0,167 | 0,145 | 0,133
b, |0439| 0,208 0,144 0,100 | 0,074 | 0,058 | 0,048 | 0,041 | 0,037
—106, | 1,213 | 0,604 | 0,368 0,249 | 0,178 | 0,135 | 0,110 { 0,091 | 0,081
106, {0,263 0,127 | 0,076] 0,050 | 0,035 0,026 | 0,02( | 0.018 | 0.015
d, |—0,521|—0]394 |-—0,166| 0.046 | 0,207 | 0.336 | 0,435 | 0,519 | 0,591

d; 10,313 | 0,163 | 0,062 —0,027 [—0,088 |—0,130 |—0,167 |—0,200 {—0,236
10d; | —0,609 —0,475 |—0,172{ 0,090 | 0,275 | 0,356 | 0,440 | 0,514 | 0,572
lod, |0,i35| 0,107 | 0,026|—0,026 |—0,056 |—0,08! |—0,098 |0, 110 |—0,121

E bksh
Dye=—*L (12)
So+ XS,

k=1

The values of the first four coefficients by and di are given in Table 2 for different values of n,

Practical calculations are extremely simple and are carried out in the following way. From the
specified velocity distribution U(x) outside the layer and Eq. (4) we find the values of &(x) and then the
function Sg(x). We determine the coefficients by and dy from Table 2 for a given n, then use (12) to deter-
mine the values of the parameter Dy(x), and turn to Table 1. For each value of n this table gives the first
five coefficients ai for three values of the parameter D, embracing the range of D; values required from
the practical point of view. The ai = ai(D,) dependence is very weak, so that for intermediate values of
D, the coefficients ay may be determined by linear interpolation, This gives sufficient data to calculate the
frictional stress at the wall from Eq. (10).

If necessary the velocity distribution in the layer (in the x, ¢ plane) may be determined from (8). The
coefficients Ay are also tabulated. The transition to the real x, y plane and the calculation of the charac-
teristic layer thicknesses are carried out in the same way as for a Newtonian fluid [3].

The results may be refined, if necessary, by taking the foregoing as a first approximation and then
calculating the next approximations. Usually the second approximation differs little from the first, even
in the break-off region, and consideration may be limited to the second. In the rest of the flow the first
approximation is usually sufficient, since it is almost exactly repeated by the next approximations,

In order to calculate the next approximations we turn (as in [2]) to Eq. (5), considering that the first
term in this equation and the coefficient of the second derivative are calculated from the results of the
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Fig. 1. Variation in the dimensionless frictional stress on the sur-
face of a circular cylinder (a) and calculated values of the dimension-
less frictional stress in the break-away region (b) in relation to n,

previous approximation, Then Eq. (5) may be considered as an ordinary linear equation in the function Z
to be determined in the next approximation. Integrating Eq. (5) under these conditions and satisfying the
boundary conditions (6), we obtain

f;

(o)

iy = U1, — U+ 1 () (13)

i
where

q
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Hj(«), Ij(=) are the values of the integrals (14) at ¢ — =,

Making use of Eq. (13) it is not difficult to find the frictional stress at the wall in the (i + 1)-th ap-
proximation:

" [ Uz+l&L]f (15)

Fora =l E DO T )

It follows from the resultant relationships that the calculation of the next approximations reduces essentially
to the calculation of the integrals (14). For the second approximation the quantities Z, u/U, and the cor-
responding derivatives are determined by means of the series (8), and for the next approximations by means
of Eq. (13).

The integrand defining I in Eq. (14) increases infinitely as ¢ — 0, and in the equation defining F it
becomes indeterminate. Expanding these expressions in series around ¢ = 0, it may be shown that the in-
tegrand in F and the integral itself vanish at ¢ = 0, while the integrand in I increases without limit as <p"1/2.
Close to ¢ = 0 I may be expressed by the following series:

23/2(n.‘_ I)szl—l - CPS/Q @
= | Si® _mgibk8k+-..,
3n(n + HOPREH) g 20 o

where by = 2nt/(+1) (n + 1) (n+2)/(+1) (@k-q * kay). This series enables us to determine the value of [ for

a certain ¢, close to zero (in our present calculations ¢y = 0.005). Subsequent calculation proceeds numer-
ically.

Figures la and b show the calculated frictional forces at the wall of a circular cylinder for a sinu-
soidal velocity distribution at the outer boundary of the boundary layer: U = sinx. The broken lines show
the results of a calculation based on Eq. (10); the continuous lines represent the second approximation,

In addition to this, the points in Fig. 1b represent the data obtained for a Newtonian fluid (n = 1) in [7] by
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x° numerical integration of the boundary-layer equations, these being

b
\ given for the sake of comparison,
104 ‘
N We see from the results presented that a calculation based on
Eq. (10) agrees with the results of the second approximation for all n
o2 and everywhere except in the region close to the break-away point,
Close to this point series (8) and (10) diverge for n # 1. Nevertheless,

m‘ggg 05 / % 18 N the use of four terms with n > 1 and five with n < 1 in series (10) yields

quite good results even in this region (Fig. 1b). The values of the cen-
tral angle x° defining the position of the break-away point found in the
first and second approximations differ by only 3-4° for all values of n,
This is no greater than the differences attributable to approximate
methods of calculation (such as integration methods) even in the case of a Newtonian fluid, for which the
errors are well known [4, 5] to be much smaller than in the case of n # 1.

Fig. 2. Dependence of the cen-
tral angle x,g on the index n,

We may judge the accuracy of the results obtained from the extent to which the second and first ap-
proximations agree, and also from the comparison with numerical-integration data presented in Fig. 1b,
from which it follows that for n = 1 the two results practically coincide.

Thus the proposed method of calculation ensures a reasonably high accuracy in the first approxima-
tion (semiintegral method) at every point except in the region close to the break-away point, at which the
second approximation is essential in order to produce an accuracy of the same order.

We see from Fig. 1a that, as the index n representing the non-Newtonian behavior of the fluid dimin-
ishes, the frictional stress at the wall of the cylinder increases. The break-away point then moves down-
ward along the flow, The dependence of the central angle X, defining the position of the break-away point
on the index n is extremely weak and almost linear (Fig. 2).

The very slight dependence of the position of the break-away point on the index supports the conten-
tion of earlier authors [8] to the effect that the mechanism underlying the viscous-elastic behavior of the
fluid provides an explanation for the observed protraction of the break-away region when a pseudo-plastic
fluid passes around a cylinder.

In conclusion, we may note that the proposed method of calculation may be used for integrating the
equations of motion even for rheological laws more complicated than ordinary power laws. In order to
linearize the original equation in this case we may use not only automodel solutions but also any other fam-
ily of functions containing parameters and satisfying the corresponding conditions, for example, the families
used in the construction of integration methods.

NOTATION

are the Cartesian coordinates;

are the components of the velocity vector along the coordinate axes;
is the velocity of the external flow;

is the current function;

is the auxiliary variable; -
is the stress tensor: ‘

is the tensor of deformation (shear) rates;

is the consistency index of the fluid;

is the index representing the non-Newtonian behavior of the fluid;
is the index in the power law of the external velocity distribution;

is the stress at the wall; .

is the second invariant of the tensor of deformation rates [4].
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As scales for the dimensionless quantities we take: for x, the characteristic dimensions of the body L;
fory, L/Rei/(n“), Re = (U%D1M/(K/p) the generalized Reynolds number; for u, U, the velocity a long way
from the body U_;
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